Credit scoring with boosted decision trees
نویسنده
چکیده
The enormous growth experienced by the credit industry has led researchers to develop sophisticated credit scoring models that help lenders decide whether to grant or reject credit to applicants. This paper proposes a credit scoring model based on boosted decision trees, a powerful learning technique that aggregates several decision trees to form a classifier given by a weighted majority vote of classifications predicted by individual decision trees. The performance of boosted decision trees is evaluated using two publicly available credit card application datasets. The prediction accuracy of boosted decision trees is benchmarked against two alternative data mining techniques: the multilayer perceptron and support vector machines. The results show that boosted decision trees are a competitive technique for implementing credit scoring models.
منابع مشابه
A credit scoring analysis using data mining algorithms
Credit scoring is very important nowdays as it helps lenders to evaluate new credit applicants, it is an analysis through which banks can decide beforehand if a customer will be able to repay his debt, among with the interest, based on the historic data of former and present debtors. The purpose of this paper is to conduct a comparative study on the accuracy of classification models, the data b...
متن کاملThe Use of Genetic Algorithm, Clustering and Feature Selection Techniques in Construction of Decision Tree Models for Credit Scoring
Decision tree modelling, as one of data mining techniques, is used for credit scoring of bank customers. The main problem is the construction of decision trees that could classify customers optimally. This study presents a new hybrid mining approach in the design of an effective and appropriate credit scoring model. It is based on genetic algorithm for credit scoring of bank customers in order ...
متن کاملEnhancing credit scoring model performance by a hybrid scoring matrix
Competition of the consumer credit market in Taiwan has become severe recently. Therefore, most financial institutions actively develop credit scoring models based on assessments of the credit approval of new customers and the credit risk management of existing customers. This study uses a genetic algorithm for feature selection and decision trees for customer segmentation. Moreover, it utilize...
متن کاملA literature review on the application of evolutionary computing to credit scoring
The last years have seen the development of many credit scoring models for assessing the creditworthiness of loan applicants. Traditional credit scoring methodology has involved the use of statistical and mathematical programming techniques such as discriminant analysis, linear and logistic regression, linear and quadratic programming, or decision trees. However, the importance of credit grant ...
متن کاملBuilding credit scoring models using genetic programming
Credit scoring models have been widely studied in the areas of statistics, machine learning, and artificial intelligence (AI). Many novel approaches such as artificial neural networks (ANNs), rough sets, or decision trees have been proposed to increase the accuracy of credit scoring models. Since an improvement in accuracy of a fraction of a percent might translate into significant savings, a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008